FULL PAPERS

DOI: 10.1002/asia.200800059

Asymmetric Ligand-Exchange Reaction of Biphenol Derivatives and Chiral Bis(oxazolinyl)phenyl–Rhodium Complex

Hiroko Inoue, Jun-ichi Ito, Makoto Kikuchi, and Hisao Nishiyama^{*[a]}

Dedicated to Professor Ryoji Noyori on the occasion of his 70th birthday

Abstract: Chiral bis(oxazolinyl)phenyl–rhodium acetate complex can enantioselectively capture 1,1'-binaphthol derivatives by ligand-exchange reaction. The structure of the bis(oxazolinyl)phenyl–rhodium biphenol and binaphthol complexes were confirmed by X-ray analysis.

Keywords: binaphthols · enantioselectivity · ligand exchange · oxazolines · rhodium

Introduction

We previously demonstrated that chiral bis(oxazolinyl)phenyl (Phebox) ligands are potent terdentate NCN ligands that provide a chiral meridional coordination site and a C_2 -symmetric environment, the transition-metal complexes of which have been applied to asymmetric catalysis.^[1] Recently, we found that the acetate group on the Rh complexes play a key role as a basic site for cleavage of the C-H bond of aromatic compounds, acetylenes, and ketones.[2] On the basis of these observations, we envisioned the possibility of a ligandexchange reaction between the acetate ligand and certain phenols in terms of molecular recognition of chiral molecules around the transition-metal coordination sites. After screening some phenol compounds, we found that 2,2'-biphenol and 1,1'-bi(2-naphthol) derivatives can exchange to form biphenolate or binaphtholate derivatives. Herein, we reveal some ligand-exchange reactions, including enantioselective reactions and kinetic resolution of binaphthol derivatives, which are important chiral reagents for asymmetric synthesis and molecular recognition. $[3, 4]$

Results and Discussion

Reaction of Rh[(S,S)-Phebox] Acetate 1 and 2,2'-Biphenol (2)

First, we attempted a ligand-exchange reaction with 2,2'-biphenol (2). A solution of rhodium complex 1 and 2 (1.5 equiv) in CH₂Cl₂ was stirred for 24 h at 40 °C. The mixture was purified by silica-gel column chromatography with hexane/ethyl acetate to give Rh[(S,S)-Phebox](biphenolate)- (OAc) 3 in 44% yield (Scheme 1).^[5] In toluene, complex 3 was isolated in 47% yield at 40° C and in 55% yield at

Scheme 1. Ligand-exchange reaction of $Rh[(S,S)$ -Phebox] acetate 1 and 2,2'-bi(2-phenol) (2).

E-mail: hnishi@apchem.nagoya-u.ac.jp Supporting information for this article is available on the WWW under http://www.chemasianj.org or from the author.

[a] H. Inoue, Dr. J.-i. Ito, Dr. M. Kikuchi, Prof. H. Nishiyama

Department of Applied Chemistry Graduate School of Engineering

Chikusa, Nagoya, 464-8603 (Japan)

Nagoya University

 $Fax: (+81)52-789-3335$

1284 **Faction Community Figure 1288** For 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim *Chem. Asian J.* 2008, 3, 1284–1288

AN ASIAN JOURNAL

70 °C. Interestingly, X-ray analysis of 3 shows that the biphenol moiety is fixed in the axially chiral form with the absolute configuration of S on the rhodium complex, although biphenol 2 is an achiral molecule (Figure 1). The corre-

Figure 1. Molecular structure of Rh[(S,S)-Phebox](biphenolate)(OAc) 3.

sponding rhodium complex bearing the R biphenol could not be detected under the above conditions. It is thought that the complex with the R biphenol may be too unstable to isolate by silica-gel chromatography or TLC monitoring at ambient temperature.

Reaction of Rh[(S,S)-Phebox] Acetate 1 and 1,1'-Bi(2 naphthol) (4)

On the basis of the above finding that the $Rh[(S,S)$ -Phebox] fragment captures favorably the S form of the biphenol skeleton, we envisioned that S binaphthol (S) -4 rather than (R) -4 would bind strongly to $Rh[(S, S)$ -Phebox]. A solution of rhodium complex 1 and (S) -4 (1.5 equiv) in toluene was stirred for 24 h at 30° C. The mixture was purified by silicagel column chromatography with hexane/ethyl acetate to give $Rh[(S,S)$ -Phebox $](S \nbinom{3}{1}$ binaphtholate)(OAc) 5 in 54% yield (Scheme 2). The yield increased to 90% by addition of K_2CO_3 (3 equiv), which accelerated the ligand-exchange reaction. On the other hand, the reaction of 1 with (R) -4 gave no stable complex. Use of K_2CO_3 with (R)-4 gave the labile complex 5' in 18% yield as the desired complex, but its structure could not be determined.

Abstract in Japanese:

キラル (ビスオキサゾリニル) フェニルロジウムアセテート錯体が、 配位子交換反応によってエナンチオ選択的にビナフトール類を捕捉 することを見いだし、錯体の構造解析に成功した。

Scheme 2. Ligand-exchange reactions of $Rh[(S, S)$ -Phebox] acetate 1 and 1,1'-bi(2-naphthol) (4).

Thus, we found that the chiral $Rh[(S,S)$ -Phebox] moiety captures (S)-1,1'-bi(2-naphthol) selectively to make a relatively stable complex by a ligand-exchange reaction. The structure of 5 was confirmed by X-ray analysis (Figure 2). One of the naphthalene groups is parallel to the oxazoline plane, whereas the other is stacked on the isopropyl group.

Figure 2. Molecular structure of $Rh[(S,S)$ -Phebox $](S \n b$ inaphtholate)-(OAc) 5.

Enantiodiscrimination of 1,1'-Bi(2-naphthol)

By using an excess of racemic $1,1'-bi(2-naphthol)$ (4; 4.0 equiv with respect to 1), the ligand-exchange reaction

FULL PAPERS **H. Nishiyama et al.**

with 1 was performed in toluene at 50° C for 24 h because of the slowexchange rate (Scheme 3). After chromatographic separation with silica gel, complex 5 was obtained in 61% yield based on 1. Binaphthol 4 was recovered in 79% yield based on 4, with 18% ee (R) . Treatment of the isolated complex 5 in methanol and hydrochloric acid at room temperature for 10 min gave the optically pure S binaphthol and Rh- $[(S, S)$ -Phebox $]Cl₂(H₂O)$, respectively, in quantitative yields. At reaction temperatures of 60 and 70 \degree C, the yield of 5 increased to 75 and 85% based on 1, respectively.

Scheme 3. Ligand-exchange reactions and kinetic resolution.

In the presence of K_2CO_3 (0.050 mmol), the ligand-exchange reaction with 1 (0.055 mmol) and racemic 4 (0.10 mmol) proceeded to give complex 5 in around 91% yield, which was contaminated with a small amount of free binaphthol or the isomeric complex 5', and the R binaphthol was recovered in 50% yield with 73% ee. The S binaphthol obtained from the mixture of the complexes showed 93% ee. Thus, the addition of K_2CO_3 accelerated the exchange reaction, but it resulted in the formation of an undesirable complex.

Reaction of Rh[(S,S)-Phebox] Acetate 1 and Substituted 1,1'-Bi(2-naphthol)

Other racemic substituted binaphthols 6 and 7 were examined to produce the corresponding complexes 8 and 9 with S binaphthols as ligands in 70 and 72% yield, respectively (Scheme 4). Optically pure S binaphthols were recovered from 8 and 9. The molecular structure of 8 was also confirmed by X-ray analysis. On the other hand, 3,3'-methoxycarbonyl derivative 10 did not react with 1 because of the sterically hindered binding sites.

Stabilization of the Complexes by Hydrogen Bonding

We thought that the matched pair of the (S, S) -Phebox substructure on the rhodium atom and the S-binaphthol skeletons could be stabilized mainly by a preferable steric convex–concave stacking relation. Furthermore, it is also interesting that hydrogen bonding between an O atom of the acetate and the H atom of the equatorial OH group of binaphthol was found; this hydrogen bonding may stabilize the complexes. The hydrogen-bond distances O_{Ac} . H_{OH} derived from X-ray analysis are $1.69-1.86 \text{ Å}$ for 3, 5, and 8 (Table 1).

Scheme 4. Ligand-exchange reactions with other substituted binaphthols.

Table 1. Selected bond lengths and distances (A) of 3, 5, and 8.

Conclusions

We have demonstrated enantioselective ligand-exchange reactions with a chiral (bisoxazolinyl)–rhodium fragment to show the selective capturing of S-binaphthol compounds and to clarify the molecular structures of the resulting complexes.

Experimental Section

General

Complex 1 was prepared by our previously reported method.[5] Biphenol 2 and binaphthol derivatives 4 and 6 are commercially available. Binaphthols 7 and 10 were synthesized by coupling with CuCl(OH)·TMEDA (TMEDA = N, N, N' tetramethylethylenediamine).^[6] ¹H and ¹³C NMR spectra were recorded at 25°C on Varian 300 and 500 spectrometers. Infrared spectra were recorded on a JASCO FR/IR-230 spectrometer. High-resolution mass spectrometry was performed on a JOEL JMS-700 spectrometer.

Syntheses

3: Compounds 1 (26.9 mg, 0.050 mmol) and 2 (14.0 mg, 0.075 mmol) were placed in a flask. Under argon atmosphere, dichloromethane (2 mL) was added, and the mixture was stirred at 40° C for 24 h. The reaction was monitored by TLC; product $R_f=0.4$ (hexane/ethyl acetate=1:1). The mixture was purified by column chromatography (silica gel, hexane/ethyl acetate=5:1) to give 3 in 44% yield (14.2 mg, 0.022 mmol). At 40 \textdegree C, a solution of 1 (21.5 mg, 0.040 mmol) and 2 (11.2 mg, 0.060 mmol) in toluene (2.0 mL) gave 3 in 47% yield (12.2 mg, 0.019 mmol). At 70 °C, a solution of 1 (26.9 mg, 0.050 mmol) and 2 (18.6 mg, 0.10 mmol) in toluene (2.0 mL) gave 3 in 55% yield (17.8 mg, 0.027 mmol). 3: Yellowish-orange solid; m.p.: 191 °C (decomp.); IR (KBr): $\tilde{v} = 1620 \text{ cm}^{-1}$; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.56$ (d, $J = 6.9 \text{ Hz}, 3\text{ H}$), 0.61 (d, $J = 6.6 \text{ Hz}, 3\text{ H}$), 0.68 (d, $J=6.9$ Hz, 3H), 0.81 (d, $J=7.2$ Hz, 3H), 1.79 (s, 3H), 1.80-1.94 (m, 1H), 2.06–2.17 (m, 1H), 2.58 (ddd, J=10.1, 6.9, 3.2 Hz, 1H), 4.18 $(ddd, J=9.9, 6.9, 3.6 Hz, 1 H), 4.33–4.47 (m, 2 H), 4.61–4.74 (m, 2 H), 6.63$ $(d, J=8.4 \text{ Hz}, 1 \text{ H}), 6.86-7.23 \text{ (m, 8 H)}, 7.42 \text{ (d, } J=7.5 \text{ Hz}, 1 \text{ H}), 7.67 \text{ ppm}$ (dd, J = 7.8, 1.2 Hz, 1H); ¹³C NMR (75 MHz, CD₂Cl₂): δ = 14.2, 14.5, 19.3, 19.4, 23.6, 29.1, 29.3, 65.9, 68.4, 71.7, 116.1, 119.1, 120.8, 123.2, 125.2, 127.4, 127.5, 128.1, 131.3, 131.5, 131.8, 131.9, 132.1, 134.9, 155.0, 167.1, 170.6 (d, $J_{\text{Rh},C}$ =4.6 Hz), 171.9 (d, $J_{\text{Rh},C}$ =4.2 Hz), 185.1, 188.2 ppm (d, $J_{\text{Rh},C}$ = 26.5 Hz); HRMS (FAB): m/z calcd for C₃₂H₃₅N₂O₆Rh: 646.1550; found: 646.1559.

5: Compounds 1 (26.9 mg, 0.050 mmol) and (S)-4 (21.5 mg, 0.075 mmol) were placed in a flask. Under argon atmosphere, toluene (2 mL) was added, and the mixture was stirred at 30° C for 24 h. The reaction was monitored by TLC; product $R_f=0.6$ (hexane/ethyl acetate=1:1). The mixture was purified by column chromatography (silica gel, hexane/ethyl acetate=4:1) to give 5 in 54% yield (20.0 mg, 0.027 mmol). With K_2CO_3 (20.7 mg, 0.15 mmol), 5 was obtained in 90% yield (33.7 mg, 0.045 mmol). 5: Yellowish-orange solid; m.p.: 226 °C (decomp.); IR (KBr): $\tilde{v} = 1620 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = -0.01$ (d, J= 6.6 Hz, 3H), 0.33 (d, $J=7.2$ Hz, 3H), 0.40 (d, $J=6.9$ Hz, 3H), 0.48 (d, $J=$ 6.6 Hz, 3H), 0.70–0.82 (m, 1H), 1.75 (s, 3H), 1.96–2.06 (m, 1H), 2.13– 2.19 (m, 1H), 4.05 (ddd, J=9.9, 6.3, 3.0 Hz, 1H), 4.40–4.61 (m, 4H), 6.60 (d, $J=9.0$ Hz, 1H), 6.91 (dd, $J=13.5$, 8.4 Hz, 1H), 7.01-7.08 (m, 2H), 7.16–7.25 (m, 2H), 7.35 (t, J=7.5 Hz, 1H), 7.53 (d, J=8.4 Hz, 1H), 7.59 (dd, $J=7.5$, 1.1 Hz, 1H), 7.67 (dd, $J=7.5$, 1.1 Hz, 1H), 7.83 (d, $J=8.1$ Hz, 1H), 7.87 (d, J=8.7 Hz, 1H), 7.92 ppm (d, J=8.7 Hz, 1H); 13C NMR $(125 \text{ MHz}, \text{CD}, \text{Cl}_2)$: $\delta = 13.4, 13.8, 18.9, 19.0, 23.7$ (d, $J_{\text{Rb}} = 3.0 \text{ Hz}$), 28.0, 28.9, 66.1 (d, $J_{\text{Rh},C} = 3.0 \text{ Hz}$), 68.6, 71.3, 71.8, 118.0, 121.4, 122.2, 123.3, 123.5, 124.9, 125.1, 125.6, 126.0, 127.8, 127.9, 127.9, 128.0, 128.2, 128.4, 128.6, 129.3, 129.9, 130.9, 132.3, 132.6, 135.3, 135.8, 153.4, 167.7, 171.0, 172.0, 185.1, 189.2 ppm (d, $J_{\text{Rh},\text{C}} = 25.8 \text{ Hz}$); HRMS (FAB): m/z calcd for $C_{40}H_{30}N_2O_6Rh$: 746.1863; found: 746.1876. When (R) -4 was used with $K₂CO₃$ under the same conditions described above, 5' was obtained in 18% yield (6.8 mg, 0.009 mmol).

Enantiodiscrimination: Compound 1 (26.9 mg, 0.050 mmol) and racemic 4 (57.3 mg, 0.20 mmol) were placed in a flask. Under argon atmosphere, toluene (2 mL) was added, and the mixture was stirred at 50° C for 24 h. The mixture was purified by column chromatography (silica gel, hexane/ ethyl acetate=5:1) to give 5 in 61% yield (22.7 mg, 0.0304 mmol) and 4 in 79% yield (45.0 mg, 0.157 mmol; 18% ee (R), DAICEL CHIRALPAK AD-H, hexane/*i*PrOH = 90:10, 1.0 mLmin⁻¹, t_R = 31.6 (*R*), 36.8 min (*S*)). Next, hydrochloric acid (1_N, 0.5 mL) was added to a solution of 5 (22.7 mg) in methanol (1.5 mL). The solvent was removed under reduced

pressure, and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate=5:1-0:1) to give (S)-4 in >99% yield $(8.6 \text{ mg}, 0.030 \text{ mmol})$ and $Rh[(S, S)-Phebox]Cl₂(H₂O)$ in 96% yield (14.1 mg, 0.029 mmol). With K_2CO_3 (19.0 mg, 0.14 mmol), a solution of 1 (29.6 mg, 0.055 mmol) and racemic 4 (28.6 mg, 0.10 mmol) in toluene (2 mL) gave 5 in 91% yield (33.8 mg, 0.0453 mmol; yield based on 0.05 mmol of 4), and 4 was recovered in 50% yield (14.4 mg) , 0.050 mmol).

8: Compound 1 (26.9 mg, 0.050 mmol) and racemic 6 (88.8 mg, 0.20 mmol) were placed in a flask. Under argon atmosphere, toluene (2 mL) was added, and the mixture was stirred at 70 $^{\circ}$ C for 24 h. The reaction was monitored by TLC; product $R_f=0.6$ (hexane/ethyl acetate= 1:1). The mixture was purified by column chromatography (silica gel, hexane/ethyl acetate=4:1) to give 8 in 70% yield (31.7 mg, 0.035 mmol) and recovered 6 in 81% yield (31.7 mg, 0.035 mmol; 25.3% ee (R), DAICEL CHIRALPAK AD-H, hexane/iPrOH = $90:10$, 1.0 mLmin⁻¹, $t_R = 21.5$ (R), 50.1 min (S)). 8: Pale-yellow solid; m.p.: 256 °C (decomp.); IR (KBr): $\tilde{v} = 1620 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = -0.01$ (d, J= 6.3 Hz, 3H), 0.39 (d, $J=7.2$ Hz, 3H), 0.42 (d, $J=6.9$ Hz, 3H), 0.48 (d, $J=$ 6.9 Hz, 3 Hz), 0.70–0.84 (m, 1H), 1.66 (br s, 1H), 1.75 (s, 3H), 1.90–2.04 (m, 1H), 2.14–2.22 (m, 1H), 3.99–4.07 (m, 1H), 4.35–4.62 (m, 4H), 6.59 $(d, J=8.7 \text{ Hz}, 1 \text{ H}), 6.72 \text{ (dd, } J=13.7, 9.2 \text{ Hz}, 2 \text{ H}), 7.11 \text{ (ddd, } J=9.2, 6.3,$ 2.2 Hz, 2H), 7.35 (t, $J=7.5$ Hz, 1H), 7.44 (d, $J=9.0$ Hz, 1H), 7.59 (d, $J=$ 7.5 Hz, 1H), 7.67 (d, J=7.5 Hz, 1H), 7.82 (d, J=2.1 Hz, 1H), 7.85 (dd, $J=17.4$, 9.0 Hz, 2H), 7.99 ppm (d, $J=1.5$ Hz, 1H); ¹³C NMR (75 MHz, CD₂Cl₂): δ = 13.6, 13.9, 19.1, 19.2, 23.8, 28.2, 29.1, 66.1, 68.5, 71.3, 71.7, 115.5, 116.8, 119.1, 120.8, 123.4, 124.3, 126.6, 126.9, 127.6, 127.7, 127.7, 128.3, 128.5, 129.1, 129.2, 129.3, 129.7, 129.9, 130.6, 131.8, 132.2, 133.3, 133.9, 153.7, 167.9, 170.7, 171.7, 185.0, 188.1 ppm (d, $J_{\text{Rh},\text{C}} = 26.3 \text{ Hz}$); HRMS (FAB): m/z calcd for $C_{40}H_{37}Br_2N_2O_6Rh$: 902.0073; found: 902.0083.

9: Compound 1 (26.9 mg, 0.050 mmol) and racemic 7 (69.3 mg, 0.20 mmol) were placed in a flask. Under argon atmosphere, toluene (2 mL) was added, and the mixture was stirred at 70 \degree C for 24 h. The reaction was monitored by TLC; product $R_f=0.63$ (hexane/ethyl acetate= 1:1). The mixture was purified by column chromatography (silica gel, hexane/ethyl acetate=4:1) to give 9 in 72% yield (29.0 mg, 0.036 mmol) and recovered 7 in 80% yield (55.2 mg, 0.159 mmol; 21.9% ee (R), DAICEL CHIRALPAK AD-H, hexane/iPrOH = $90:10$, 1.0 mLmin⁻¹, $t_R = 47.0$ (S), 52.6 min (R)). 9: Pale-yellow solid; m.p.: 157–160 °C; IR (KBr): $\tilde{v} = 1620 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.00$ (d, $J = 6.6$ Hz, 3H), 0.39 (d, J=6.6 Hz, 3H), 0.42 (d, J=6.6 Hz, 3H), 0.50 (d, J=6.6 Hz, 3H), 0.72–0.86 (m, 1H), 1.72 (br s, 1H), 1.75 (s, 3H), 1.96–2.08 (m, 1H), 2.25–2.30 (m, 1H), 3.22 (s, 3H), 3.37 (s, 3H), 4.05 (ddd, J=9.9, 6.2, 3.0 Hz, 1H), 4.39–4.61 (m, 4H), 6.20 (d, $J=2.4$ Hz, 1H), 6.26 (d, $J=$ 2.4 Hz, 1H), 6.45 (d, $J=8.7$ Hz, 1H), 6.87 (ddd, $J=12.8$, 8.8, 2.6 Hz, 2H), 7.34 (t, J=7.7 Hz, 1H), 7.44 (d, J=8.7 Hz, 1H), 7.55 (d, J=9.0 Hz, 1H), 7.58 (dd, J=7.5, 0.9 Hz, 1H), 7.67 (dd, J=7.5, 0.9 Hz, 2H), 7.70 (d, J= 9.3 Hz, 1H), 7.72 (d, J=8.7 Hz, 1H), 7.81 ppm (d, J=8.7 Hz, 1H); ¹³C NMR (75 MHz, CD₂Cl₂): δ = 13.6, 14.0, 19.1, 19.2, 23.8, 28.1, 29.0, 55.0, 55.1, 66.0, 68.5, 71.3, 71.7, 104.5, 105.0, 113.7, 115.2, 115.3, 120.3, 123.2, 123.8, 124.0, 125.1, 125.7, 127.4, 127.4, 127.5, 128.7, 129.1, 129.3, 131.9, 132.2, 135.9, 136.2, 153.5, 157.3, 157.6, 167.5, 170.5 (d, J_{Rh.C}= 4.0 Hz), 171.6 (d, $J_{\text{RbC}} = 4.1$ Hz), 184.5 (d, $J_{\text{RbC}} = 1.2$ Hz), 188.7 ppm (d, $J_{\text{Rh},\text{C}}$ = 26.3 Hz); HRMS (FAB): m/z calcd for C₄₂H₄₃N₂O₈Rh: 806.2074; found: 806.2085.

Crystallographic Structural Determination

3, 5, and 8: Single crystals suitable for X-ray diffraction were obtained from pentane/ethyl acetate at room temperature. Diffraction data were collected on a Brucker SMART APEX CCD diffractometer with graphite-monochromated Mo_{Ka} radiation ($\lambda = 0.71073$ Å). An empirical absorption correction was applied by using SADABS. Structures were solved by direct methods and refined by full-matrix least squares on F^2 with SHELXTL. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were located on calculated positions and refined as rigid groups. 3: $C_{32}H_{35}N_2O_6Rh$, $M_r=646.53$, $T=$ 173(2) K, monoclinic, space group $P2_1$, $a=9.9686(11)$, $b=9.2537(11)$, $c=$

FULL PAPERS **H. Nishiyama et al.**

15.9256(18) Å, $\beta = 90.916(2)$ °, $V=1468.9(3)$ Å³, $Z=2$, $\rho_{\text{calcd}}=$ 1.462 Mgm⁻³, $\mu = 0.628$ mm⁻¹, $F(000) = 668$, crystal size = 0.40 × 0.30 × 0.20 mm³, $\theta = 2.04 - 27.51$ °, index ranges: $-12 \le h \le 12$, $-12 \le k \le 7$, $-20 \le$ $l \leq 20$; reflections collected: 10383; independent reflections: 4869 (R-(int)=0.0274); completeness to $\theta = 27.51^{\circ}$, 99.6%; max./min. transmission: 1.000000/0.805557; data/restraints/parameters: 4869/1/379; goodness-of-fit on F^2 : 1.065; final R indices $(I > 2\sigma(I))$: R1=0.0247, wR2= 0.0600; R indices (all data): $R1 = 0.0253$, $wR2 = 0.0605$; largest diff. peak/ hole: 0.905/–0.288 e Å⁻³. 5: C₄₀H₃₉N₂O₆Rh, M_r =746.64, T=173(2) K, orthorhombic, space group $P2_12_12_1$, $a=12.686(4)$, $b=15.603(5)$, $c=$ 16.958(5) Å, $V = 3356.7(17)$ Å³, $Z=4$, $\rho_{\text{calcd}} = 1.477 \text{ Mg m}^{-3}$, $\mu =$ 0.561 mm⁻¹, $F(000) = 1544$, crystal size $= 0.50 \times 0.20 \times 0.10$ mm³, $\theta = 1.77$ 28.35°, index ranges: $-16 \le h \le 16$, $-20 \le k \le 20$, $-25 \le l \le 22$; reflections collected: 25130; independent reflections: 8350 $(R(int)=0.0508)$; completeness to $\theta = 28.35^{\circ}$, 99.7%; max./min. transmission: 1.000000/ 0.692337; data/restraints/parameters: 8350/0/451; goodness-of-fit on F^2 : 1.065; final R indices $(I>2\sigma(I))$: $R1 = 0.0327$, $wR2 = 0.0735$; R indices (all data): $R1 = 0.0354$, $wR2 = 0.0747$; largest diff. peak/hole: 0.815/ -0.389 e Å⁻³. 8: C₄₀H₃₇Br₂N₂O₆Rh, M_r = 904.45, T = 153(2) K, orthorhombic, space group $P2_12_12_1$, $a=10.239(4)$, $b=18.720(7)$, $c=19.609(7)$ Å, $V=$ 3758(2) Å³, Z=4, $\rho_{\text{caled}} = 1.598 \text{ Mg m}^{-3}$, $\mu = 2.630 \text{ mm}^{-1}$, $F(000) = 1816$, crystal size = $0.60 \times 0.50 \times 0.30$ mm³, $\theta = 1.50 - 27.57$ °, index ranges: $-13 \le$ $h \leq 12$, $-22 \leq k \leq 24$, $-25 \leq l \leq 21$; reflections collected: 26413; independent reflections: 8623 ($R(int) = 0.0396$); completeness to $\theta = 27.57^{\circ}$, 99.6%; max./min. transmission: 1.000000/0.550771; data/restraints/parameters: 8623/0/469; goodness-of-fit on F^2 : 1.001; final R indices $(I > 2\sigma(I))$: R1 = 0.0293, $wR2 = 0.0673$; R indices (all data): $R1 = 0.0323$, $wR2 = 0.0683$; largest diff. peak/hole: 0.957/-0.398 eÅ⁻³. CCDC-677969 (**3**), -677968 (5), and -677970 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_ request/cif.

Acknowledgements

This research was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Concerto Catalysts, 460:18065011) and the Japan Society for the Promotion of Science (18350049), G-COE in Chemistry (Nagoya University).

- [1] H. Nishiyama, [Chem. Soc. Rev.](http://dx.doi.org/10.1039/b605991k) 2007, 36, 1133-1141.
- [2] a) J. Ito, H. Nishiyama, *[Eur. J. Inorg. Chem.](http://dx.doi.org/10.1002/ejic.200601085)* **2007**, $1114-1119$; b) J. Ito, M. Kitase, H. Nishiyama, [Organometallics](http://dx.doi.org/10.1021/om700742t) 2007, 26, 6412-6417; c) H. Inoue, M. Kikuchi, J. Ito, H. Nishiyama, [Tetrahedron](http://dx.doi.org/10.1016/j.tet.2007.11.022) 2008, 64, [493 – 499](http://dx.doi.org/10.1016/j.tet.2007.11.022).
- [3] J. M. Brunel, [Chem. Rev.](http://dx.doi.org/10.1021/cr040079g) 2005, 105, 857-897.
- [4] For examples of the resolution of binaphthol derivatives, see: a) F. Toda, K. Yoshizawa, S. Hyoda, S. Toyoda, S. Chatziefthimiou, I. M. Mavridis, [Org. Biomol. Chem.](http://dx.doi.org/10.1039/b314040g) 2004, 2, 449 – 451; b) M. Periasamy, M. N. Reddy, S. Anwar, [Tetrahedron: Asymmetry](http://dx.doi.org/10.1016/j.tetasy.2004.04.030) 2004, 15, 1809 – [1812](http://dx.doi.org/10.1016/j.tetasy.2004.04.030); c) H.-J. Schanz, M. A. Linseis, D. G. Gilheany, [Tetrahedron:](http://dx.doi.org/10.1016/S0957-4166(03)00586-X) [Asymmetry](http://dx.doi.org/10.1016/S0957-4166(03)00586-X) 2003, 14[, 2763 – 2769](http://dx.doi.org/10.1016/S0957-4166(03)00586-X); d) D. Liu, Z. Shan, F. Liu, C. Xiao, G. Lu, J. Qin, [Helv. Chim. Acta](http://dx.doi.org/10.1002/hlca.200390006) 2003, 86, 157 – 163; e) M. Periasamy, C. R. Ramanathan, N. S. Kumar, [Tetrahedron: Asymmetry](http://dx.doi.org/10.1016/S0957-4166(99)00218-9) 1999, 10, [2307 – 2310](http://dx.doi.org/10.1016/S0957-4166(99)00218-9); f) M. Kawashima, R. Hirata, [Bull. Chem. Soc. Jpn.](http://dx.doi.org/10.1246/bcsj.66.2002) 1993, 66[, 2002 – 2005](http://dx.doi.org/10.1246/bcsj.66.2002), and references therein.
- [5] For the synthesis of 1, see: Y. Kanazawa, Y. Tsuchiya, K. Kobayashi, T. Shiomi, J. Ito, M. Kikuchi, Y. Yamamoto, H. Nishiyama, [Chem.](http://dx.doi.org/10.1002/chem.200500841) [Eur. J.](http://dx.doi.org/10.1002/chem.200500841) 2006, 12, 63-71.
- [6] M. Noji, M Nakajima, K. Koga, Tetrahedron Lett. 1994, 35, 7983 7984.

Received: February 25, 2008 Published online: May 21, 2008